60 research outputs found

    ID-Care: a Model for Sharing Wide Healthcare Data

    Get PDF
    All over the world, there is a lot of patient health data in different locations such as hospitals, clinics, insurance companies, and other organizations. In this sense, global identification of the patient has emerged as an everyday healthcare challenge. Governments and institutions have to prioritize satisfactory, quick, and integrated decision-making in a wide, dispersed, and global environment because of unexpected challenges like pandemics or threats. In the current scientific literature, some of the existing challenges include support for a standard global unique identification that considers privacy issues, the combination of multiple technological biometry implementations, and personal documents. Thus, we propose a decentralized software model based on blockchain and smart contracts that includes privacy, global unique person identification supporting multiple combinations of documents, and biometric data using the Global Standards 1 - GS1 healthcare industry standard. Furthermore, we defined a methodology to evaluate a hypothetical use case of this model where an integrated and standard global health data sharing personal identification is crucial. For this, we implemented the proposed model in a global-wide continent location through cloud machines, fog computing, and blockchain considering the unique patient data identification and evaluate a use case scenario based on the top 5 most globally visited tourist destinations (France, Spain, the United States of America, China, and Italy), with an approach based on this model. The results show that using a model for a global id for healthcare can help reduce costs, time, and efforts, especially in the context of health threats, where agility and financial support must be prioritized.N/

    A Fog and Blockchain Software Architecture for a Global Scale Vaccination Strategy

    Get PDF
    Nowadays, there are many fragmented records of patient’s health data in different locations like hospitals, clinics, and organizations all around the world. With the arrival of the COVID-19 pandemic, several governments and institutions struggled to have satisfactory, fast, and accurate decision-making in a wide, dispersed, and global environment. In the current literature, we found that the most common related challenges include delay (network latency), software scalability, health data privacy, and global patient identification. We propose to design, implement and evaluate a healthcare software architecture focused on a global vaccination strategy, considering healthcare privacy issues, latency mitigation, support of scalability, and the use of a global identification. We have designed and implemented a prototype of a healthcare software called Fog-Care, evaluating performance metrics like latency, throughput and send rate of a hypothetical scenario where a global integrated vaccination campaign is adopted in wide dispensed locations (Brazil, USA, and United Kingdom), with an approach based on blockchain, unique identity, and fog computing technologies. The evaluation results demonstrate that the minimum latency spends less than 1 second to run, and the average of this metric grows in a linear progression, showing that a decentralized infrastructure integrating blockchain, global unique identification, and fog computing are feasible to make a scalable solution for a global vaccination campaign within other hospitals, clinics, and research institutions around the world and its data-sharing issues of privacy, and identification.N/

    El Mochilero: Jogo Digital Educacional para o Desenvolvimento da Competência Intercultural de Aprendizes de Língua Espanhola

    Get PDF
    Considerando-se as potencialidades dos jogos digitais educacionais e a necessidade de um recurso diferenciado para o desenvolvimento da competência intercultural de aprendizes de língua espanhola, este artigo descreve a pesquisa que origina o produto jogo digital educacional El Mochilero, como proposta de recurso para um ensino interativo, lúdico e motivador. Descreve os procedimentos de desenvolvimento e de avaliação do jogo, bem como do projeto pedagógico “Cultura en la Mochila” elaborado paralelamente como proposta que alia Informática na educação e ensino híbrido. Os resultados demonstram que jogo digital e o projeto integrado foram considerados exitosos para seus fins atingindo os objetivos previstos

    Measurements of Cloud Base Height and Coverage using Elastic Multiangle Lidar Scans at the Pierre Auger Observatory

    Get PDF

    Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory

    Get PDF
    In this work, we present an estimate of the cosmic-ray mass composition from the distributions of the depth of the shower maximum (Xmax) measured by the fluorescence detector of the Pierre Auger Observatory. We discuss the sensitivity of the mass composition measurements to the uncertainties in the properties of the hadronic interactions, particularly in the predictions of the particle interaction cross-sections. For this purpose, we adjust the fractions of cosmic-ray mass groups to fit the data with Xmax distributions from air shower simulations. We modify the proton-proton cross-sections at ultra-high energies, and the corresponding air shower simulations with rescaled nucleus-air cross-sections are obtained via Glauber theory. We compare the energy-dependent composition of ultra-high-energy cosmic rays obtained for the different extrapolations of the proton-proton cross-sections from low-energy accelerator data

    Study of downward Terrestrial Gamma-ray Flashes with the surface detector of the Pierre Auger Observatory

    Get PDF
    The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of WCDs in detecting gamma rays, it represents a unique instrument for studying downward Terrestrial Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs, were detected at the Auger Observatory. Their experimental signature and time evolution are very different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in coincidence with low thunderclouds and lightning, and their large deposited energy at the ground is compatible with that of a standard downward TGF with the source a few kilometers above the ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the whole array. The study of the performance of the new trigger system during the lightning season is ongoing and will provide a handle to develop improved algorithms to implement in the Auger upgraded electronic boards. The available data sample, even if small, can give important clues about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD allows us to observe more than one point in the TGF beam, providing information on the emission angle

    Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

    Get PDF

    Investigating multiple elves and halos above strong lightning with the fluorescence detectors of the Pierre Auger Observatory

    Get PDF
    ELVES are being studied since 2013 with the twenty-four FD Telescopes of the Pierre Auger Observatory, in the province of Mendoza (Argentina), the world’s largest facility for the study of ultra-high energy cosmic rays. This study exploits a dedicated trigger and extended readout. Since December 2020, this trigger has been extended to the three High levation Auger Telescopes (HEAT), which observe the night sky at elevation angles between 30 and 60 degrees, allowing a study of ELVES from closer lightning. The high time resolution of the Auger telescopes allows us to upgrade reconstruction algorithms and to do detailed studies on multiple ELVES. The origin of multiple elves can be studied by analyzing the time difference and the amplitude ratio between flashes and comparing them with the properties of radio signals detected by the ENTLN lightning network since 2018. A fraction of multi-ELVES can also be interpreted as halos following ELVES. Halos are disc-shaped light transients emitted at 70-80 km altitudes, appearing at the center of the ELVES rings, due to the rearrangement of electric charges at the base of the ionosphere after a strong lightning event

    Status and expected performance of the AugerPrime Radio Detector

    Get PDF

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented
    corecore